Imaging of Pediatric Neoplastic Liver Masses

Anna Agnew MS3
Oregon Health and Sciences University
December 2004

Presentation of Liver Masses

- Signs & Symptoms
 - Pain, anorexia, weight loss, fever, jaundice, congestive heart failure
- Physical Exam
 - Palpable liver mass
 - Abdominal distension

Imaging??

- US
 - Frequently the first modality: available & fast
 - Pt must fast 4-6 hours prior to procedure
 - Determines the location & extent of mass
 - Solid vs cystic
- CT
 - Use when US information isn't sufficient
 - Sedation of young children necessary
 - Dual-phase

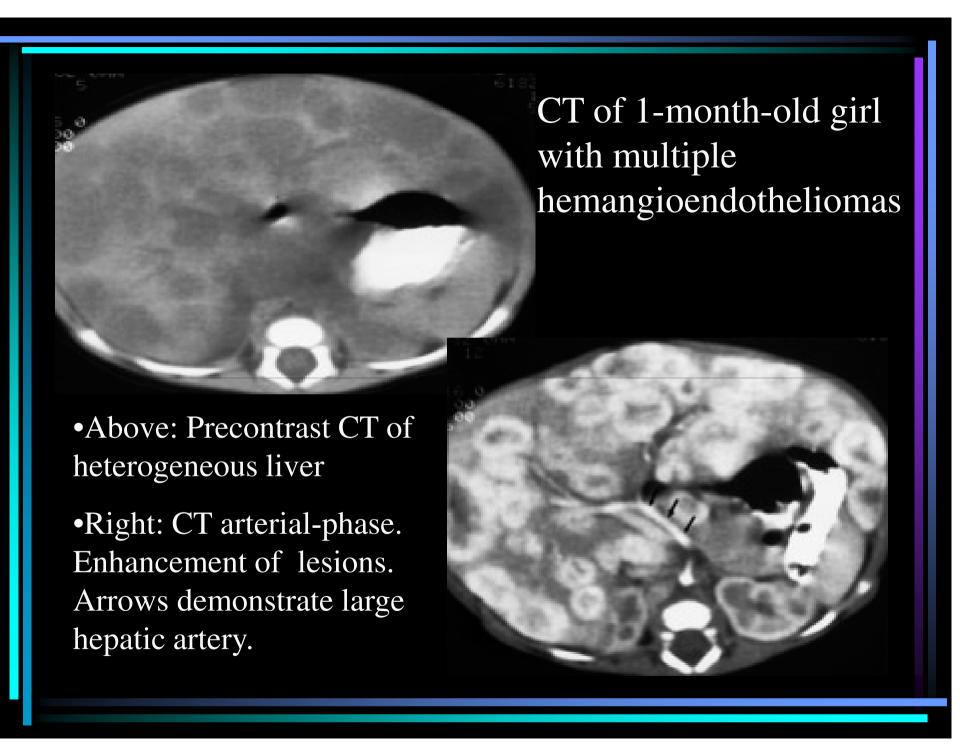
Pediatric Hepatic Tumors

- Benign
 - Hemangioendothelioma
 - Mesenchymal hamartoma
 - Cavernous hemangioma
 - Focal nodular hyperplasia
 - Hepatic adenoma

- Malignant
 - Hepatoblastoma
 - Hepatocellular carcinoma
 - PosttransplantLymphoproliferativeDisorder
 - Metastatic disease
 - Embryonal sarcoma
 - Primary endodermal sinus tumor

The Benign Neoplasms

Hemangioendothelioma
Mesenchymal hamartoma
Cavernous hemangioma
Focal nodular hyperplasia
Hepatic adenoma


Hemangioendothelioma

- Most common pediatric benign hepatic tumor
- Patients < 6 months old
- Presenting signs and symptoms
 - CHF
 - Hepatomegaly
 - Thrombocytopenia
 - Hemoperitoneum

Hemangioendothelioma: Characteristics

- Gross Appearance:
 - Multiple nodules
 - Solitary or multifocal
- Histologically:
 - Vascular tumor of mesenchyme
 - Variable areas of fibrosis, calcification, hemorrhage, & cystic degeneration
- US
 - Variable

- Unenhanced CT
 - Low attenuation
 - 50% w/ calcifications
 - Post IV contrast CT
 - Large tumors: peripheral puddling of contrast
 - Small tumors: immediate enhancement
 - Variable intensity due to fibrosis, necrosis, & hemorrhage
 - Descending aorta distal to celiac artery appears small due to shunting of CO towards the tumor

Hemangioendothelioma: Treatment

- Natural regression within 12-18 months
- Medical management includes:
 - Digitalis
 - Diurectis
 - Steroids
 - Interferon
- Chemotherapy, irradiation, embolization, and/or surgery are considered if medical management fails

Mesenchymal Hamartoma

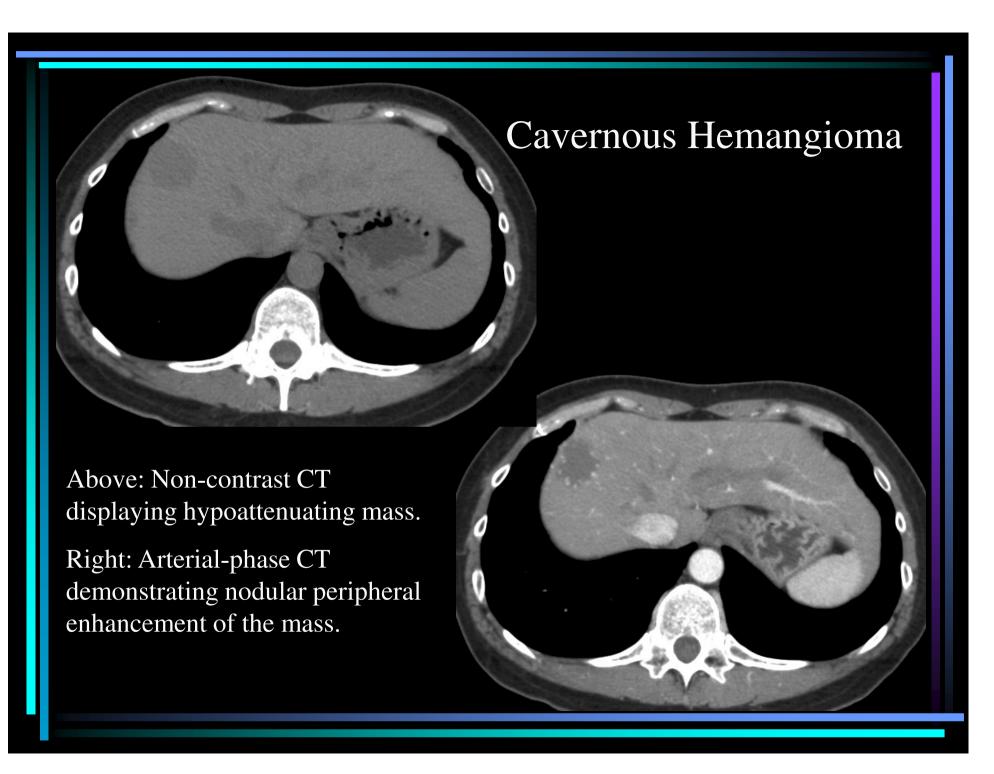
- Benign tumor arising from portal mesenchyme, likely a congenital malformation
- Slightly increased prevalence in males
- 2-3 years of age

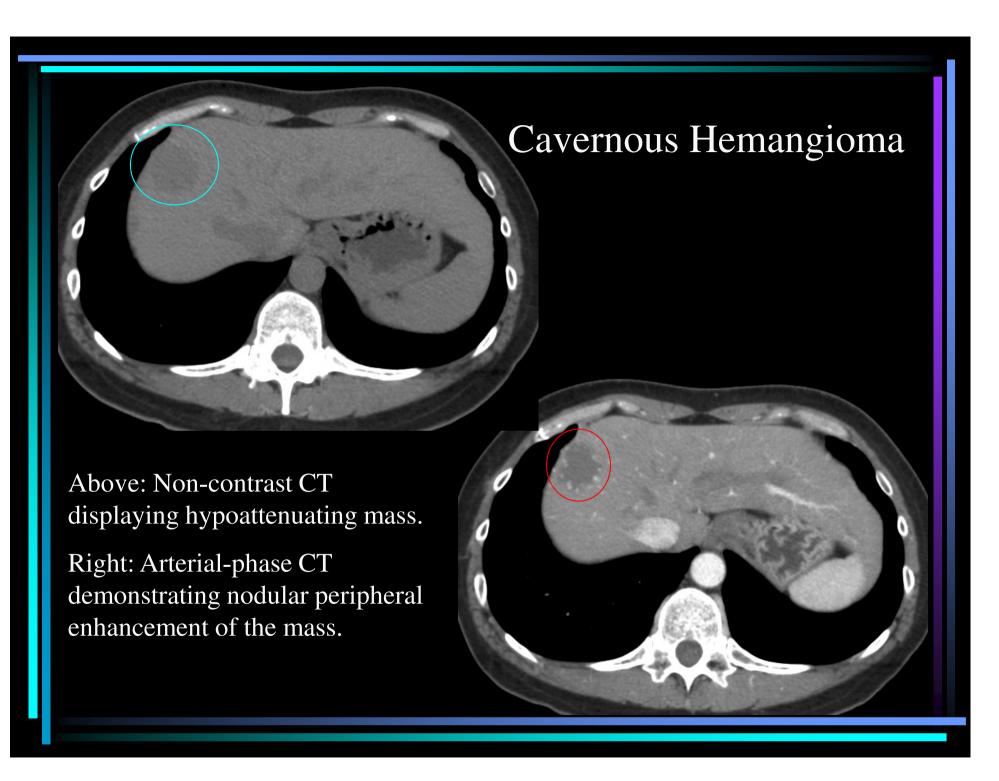
- Presenting signs and symptoms
 - Asymptomatic abdominal mass or distension
 - CHF and ascites are uncommon on presentation
- Treatment
 - Surgical resection

Mesenchymal Hamartoma: Characteristics

- Gross Appearance:
 - Well-circumscribed
 - Frequently right lobe
- Pathologic Appearance:
 - Multiple fluid-filled cysts separated by fibrous stroma with mesenchyme, abnormal bile ducts, & hepatocytes

- US
 - Anechoic or hypoechoic
- CT
 - Low attenuation
 - Appearance variable due to protein in cystic fluid
 - Stromal enhancement with contrast


Mesenchymal Hamartoma. Contrast-enhanced CT.



Cavernous Hemangioma

- Older children & adolescents
- Small, solitary, assymptomatic, & an incidental finding
- Posterior segment of right lobe
- No malignant potential
- Pathologically:
 - Multiple blood filled spaces lined with mature endothelial cells

- US
 - Hyperechoic
 - Homogeneous
 - Well-defined
- CT
 - Nonenhanced: hypoattenuating
 - Arterial-phase: nodular peripheral enhancement
 - Similar to hemangioendotheliomas

Focal Nodular Hyperplasia

- < 5% of pediatric hepatic masses
- Histological
 - Normal hepatocytes, bile
 ducts, & Kupffer cells
 Contrast enhanced CT demonstrates diffuse
- Near liver surface
- Central stellate scar with bile ducts & arteries
- US
 - Well defined
 - homogeneous

CT

- Hypo/isoattenuating relative to liver
- Contrast enhanced CT demonstrates diffuse enhancement with rapid washout
- Central scar will remain enhanced due to delayed wash out
- <5% have small calcifications</p>

Focal Nodular Hyperplasia

Hepatic Adenomas

- <5% of childhood hepatic tumors
 - Associations:
 - von Gierke's disease
 - Fanconi's anemia
 - Galactosemia
 - Anabolic Steroids
- Histologically:
 - Normal hepatocytes
 - No bile ducts or portal tracts

- US
 - Variable echogenicity
- CT
 - Unenhanced: hypoattenuating
 - Early enhancement with contrast
 - Heterogenous due to hemorrhage, necrosis, glycogen, or fat

CT scan with contrast, arterial-phase. 12yo female with von Gierke's. Enhancing heterogeneous adenoma.

CT scan with contrast, arterial-phase. 12yo female with von Gierke's. Enhancing heterogeneous adenoma (circle).

The Malignant Neoplasms

Hepatoblastoma
Hepatocellular carcinoma
Posttransplant Lymphoproliferative
Disorder
Metastatic disease
Embryonal sarcoma
Primary endodermal sinus tumor

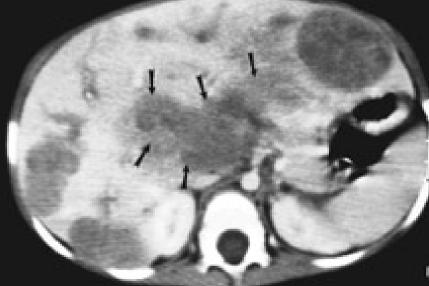
Hepatoblastoma

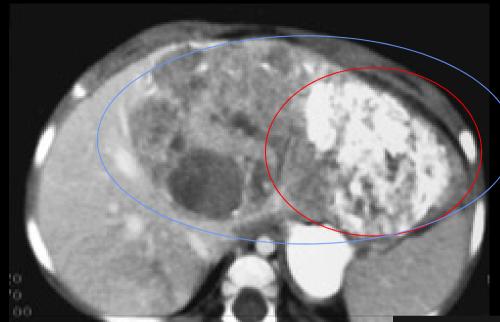
- 45% of pediatric liver masses
- Infants & young kids
- Associations:
 - Beckwith-Wiedemann
 - Hemihypertrophy
 - FAS
 - Familial Polyposis Coli
 - Gardner's Syndrome
- 65% 2-yr survival

- Presenting Signs & Symptoms
 - Usually asymptomatic
 - Abdominal pain
 - Anorexia
 - Weight loss
 - Jaundice
 - Precocious puberty
 - Osteopenia
 - Elevated serum AFP

Hepatoblastoma: Characteristics

- Unifocal, freq R lobe
- No assoc. cirrhosis
- 10-20% metastasize
 - Lungs, porta hepatis, brain, skeleton
- Histologically
 - Primitive epithelial cells resembling fetal liver
- US
 - Heterogeneous mass w/ distortion of vascular parenchymal & calcifications

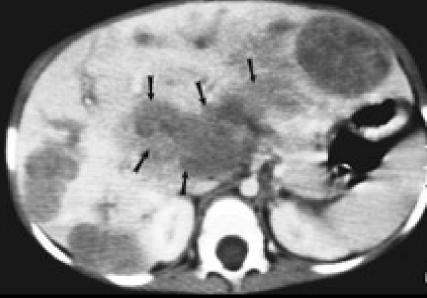

- CT
 - Heterogenous, low attenuation mass
 - Arterial phase: enhancing
 - Venous phase: hypoattenuating
- Imaging may demonstrate
 - Spread to portal lymph nodes
 - Intravascular extension
 - Tumor thrombus



Hepatoblastoma

Above: CT 1yo girl. Large, highly calcified mass of anterior segment of R lobe and entire L lobe.

Right: Multiple low attenuation nodules. Tumor thrombus in main portal veins (arrows).



Hepatoblastoma

Above: CT 1yo girl. Large, highly calcified (red) mass (blue) of anterior segment of R lobe and entire L lobe.

Right: Multiple low attenuation nodules. Tumor thrombus in main portal veins (arrows).

Hepatocellular Carcinoma (HCC)

- 2nd most prevalent pediatric liver malignancy
- Median age: 12yo (range: 5-15)
- Presenting signs & symptoms
 - Abdominal distension
 - R upper quadrant mass
- 50% have elevated AFP

- Assoc. preexisting liver
 disease in ½ of cases
 - Hepatitis B
 - Type I glycogen storage disease
 - Tyrosinemia
 - Familial cholestatic cirrhosis
 - Hemochromatosis
 - Alpha 1-antitrypsin deficiency

Hepatocellular Carcinoma: Characteristics

- Pathologically
 - Large, pleomorphic multinucleated cells with variable differentiation
- Tumor freq extensive at diagnosis, resectable in <30% of patients
- ≤ 29% survival

- US
 - Heterogeneous, mostly hyperechoic
- CT
 - Low attenuation
 - 25% w/ calcifications
 - Early arterial enhancement with rapid washout

Hepatocellular Carcinoma:

CT w/ contrast. 14yo girl. Large heterogeneous mass of R lobe. Successful surgical outcome as tumor was confined to R lobe.

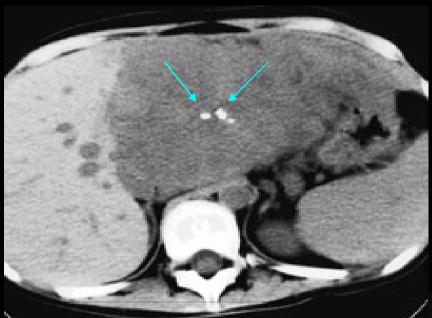
Hepatocellular Carcinoma:

CT w/ contrast. 14yo girl. Large heterogeneous mass (arrows) of R lobe. Successful surgical outcome as confined to R lobe.

Fibrolamellar Hepatocellular Carcinoma

- Rare subtype of HCC
 - Less aggressive w/ more favorable prognosis
- Adolescents & young adults
- Histologically
 - Eosinophilc hepatocytes separated with thin fibrous bands
- Presentation
 - Hepatomegaly & abdominal pain
 - Normal AFP

- Single, circumscribed mass
- US
 - Mixed echogenicity
- CT
 - Hypoattenuating
 - Contrast enhancing in arterial & venous phases
 - 70% have central scar and calcifications



Fibrolamellar HCC

Above: Non-contrast CT displays mass with central calcifications.

Right: Arterial-phase CT displays heterogeneous enhancement of the mass.

Fibrolamellar HCC

Above: Non-contrast CT displays mass with central calcifications (arrows).

Right: Arterial-phase CT displays heterogeneous enhancement of the mass (arrows).

Posttransplant Lymphoproliferative Disorder (PTLD)

- 50% of kids with PTLD have liver involvement
- Imaging appearance similar to metastases
- Three imaging patterns
 - 1. Discrete hypoechoic/low-attenuation nodular lesions, 1-4 cm (most common pattern)
 - 2. Infiltrative, poorly defined lesions, possibly leading to hepatomegaly
 - 3. Involvement of porta hepatis with frequent periportal infiltration/extension into biliary tree
 - May lead to biliary obstruction

PTLD:

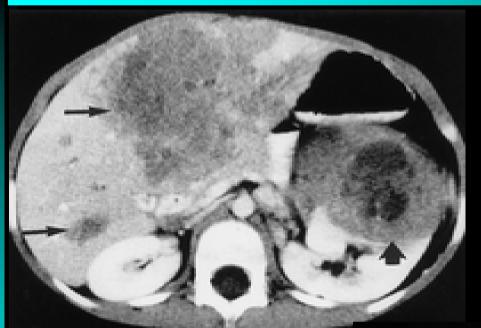
- 1. CT w/contrast: Well-defined, low-attenuation nodular lesions (arrowheads).
- 2. CT w/out contrast: Infiltrative, poorly defined lesions (arrowheads). NG tube in stomach (arrow).
- 3. CT w/contrast: Periportal infiltration (arrows).

Metastatic Disease

- Most common pediatric tumors to metastasize to liver
 - Wilms'
 - Neuroblastoma
 - RhabdomyosarcomaAbnormal LFTs
 - Lymphoma
 - Leukemia

- Presenting signs & symptoms
 - Hepatomegaly
 - Jaundice
 - Abdominal pain/mass

Metastatic Diseases


- Neuroblastoma
 - Stage IV: retroperitoneal mass with metastases to liver/skeleton/nodes
 - Stage IV-S: <1yo small ipsilateral tumors with metastases to liver, skin, & bone marrow, not cortical bone
 - Chemotherapy is primary treatment modality
 - Prognosis dependent on age, stage, and biology

- Wilms' tumor
 - Stage IV:
 Hematogenous
 spread to liver via
 renal vein
 - TXT: Surgery +Chemo + XRT
 - Survival varies with cytological features, 16.7-80.9% 4-yr survival

Metastatic Disease: Characteristics

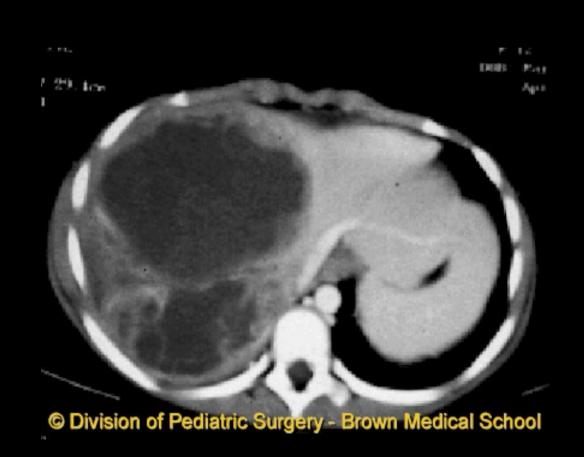
- Neuroblastoma IV-S: diffuse replacement
- All imaging modalities show widespread heterogeneity
- US
 - Hypo/hyperechoic

- CT
 - Contrast:
 hypoattenuating, w/
 occasional peripheral enhancement
 - Hypovascular in arterial and venous phases
 - Possible mass effect w/ displacement of vessels

Left: CT w/contrast 4yo male.
Wilms' tumor (thick arrow) &
hepatic metastases (thin arrows).

Below: CT. Neuroblastoma hepatic metastases (arrowheads) & large lymph node (arrow).

Hepatic Metastases



Embryonal Sarcoma

- Affects older children & Histologically adolescents
 - 50%: 6-10yo
 - 90%: < 15yo
- Presenting signs & symptoms
 - Fever
 - Painful mass
 - Normal AFP
- Large, 7-20cm with cystic spaces
- Metastasizes to lung & bone

- - Primitive spindle cells resembling embryonal cells
- US
 - Variable, due to differing amounts of cystic involvement
- - Hypoattenuation with multiple septations

Embryonal Sarcoma

Primary Endodermal Sinus Tumor

- Rare, generally arise in testis/ovary
 - 10-15% extragonadal
 - Few reported cases of primary liver origin
- Germ cell origin
- >10cm
- Friable w/ necrotic/hemorrhagic areas

- Presenting signs & symptoms
 - Abdominal mass
 - Increased AFP
- CT
 - Central necrosis
 - Similar appearance to hepatoblastoma & HCC, need biopsy for diagnosis

Imaging Role in Malignant Neoplasms

- Determine extent
- Preoperative planning
 - Cure: commonly resection/transplant
- 50-60% of hepatoblstomas are resectable
- 1/3 of pediatric HCC is resectable

- Chemotherapy
 - Post-resection: adjuvant txt
 - Pre-resection: if decrease in mass, tumor resection may be subsequently feasible

Pediatric Hepatic Masses: Generalities

- Age
 - ≤ 6 months old
 - Hemangioendothelioma
 - ≤ 3 years old
 - Hepatoblastoma
 - Mesenchymal Hamartoma
 - Metastatic Disease
 - Neuroblastoma
 - Wilms' tumor
 - Older children & adolescents
 Associated
 - HCC (5-15yo, 12yo median)
 - Focal Nodular Hyperplasia
 - Hepatic Adenoma
 - Embryonal sarcoma (6-10yo)

- Clinical Characteristics
 - Increased AFP
 - Hepatoblastoma
 - HCC
 - Primary endodermal sinus tumor
 - Embryonal sarcoma
 - CHF
 - hemangioendothelioma
 - Associated syndromes/disease
 - HCC
 - Hepatic Adenomas

References

- Golden CB. Malignant abdominal masses in children: quick guide to evaluatino and diagnosis. Pediatr Clin North Am. 49(6): 1369-92, 2002 Dec.
- Lowe LH. Isuani BH. Heller RM. Stein SM. Johnson JE. Navarro OM. Hernanz-Schulman M. Pediatric renal masses: Wilms tumor and beyond. Radiographics. 20(6):1585-603, 2000 Nov-Dec.
- Pickhardt PJ. Siegel MJ. Posttransplantation lymphoproliferative disorder of the abdomen: CT evaluation in 51 patients. Radiology. 213:73-78, 1999.
- Siegel MJ. Pediatric liver imaging. Sem Liv Dis. 21(2):251-269, 2001 Nov.
- Szues RA. Narla LD. Primary endodermal sinus tumor of the liver detected by CT. Pediatr Radiol. 22(6): 449-450, 1992 Oct.
- Tateishi U. Hasegawa T. Makimoto A. Moriyama N. Adult **neuroblastoma**: radiologic and clinicopathologic features. J. Computer Assisted Tomography. 27(3):321-6, 2003 May-Jun.